Information

11.14: Nutritional Requirements - Biology

11.14: Nutritional Requirements - Biology



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Plants are unique organisms that can absorb nutrients and water through their root system, as well as carbon dioxide from the atmosphere. The combination of soil nutrients, water, and carbon dioxide, along with sunlight, allows plants to grow.

The Chemical Composition of Plants

Since plants require nutrients in the form of elements such as carbon and potassium, it is important to understand the chemical composition of plants. The majority of volume in a plant cell is water; it typically comprises 80 to 90 percent of the plant’s total weight. Soil is the water source for land plants, and can be an abundant source of water, even if it appears dry. Plant roots absorb water from the soil through root hairs and transport it up to the leaves through the xylem. As water vapor is lost from the leaves, the process of transpiration and the polarity of water molecules (which enables them to form hydrogen bonds) draws more water from the roots up through the plant to the leaves (Figure 1). Plants need water to support cell structure, for metabolic functions, to carry nutrients, and for photosynthesis.

Plant cells need essential substances, collectively called nutrients, to sustain life. Plant nutrients may be composed of either organic or inorganic compounds. An organic compound is a chemical compound that contains carbon, such as carbon dioxide obtained from the atmosphere. Carbon that was obtained from atmospheric CO2 composes the majority of the dry mass within most plants. An inorganic compound does not contain carbon and is not part of, or produced by, a living organism. Inorganic substances, which form the majority of the soil solution, are commonly called minerals: those required by plants include nitrogen (N) and potassium (K) for structure and regulation.

Essential Nutrients

Plants require only light, water and about 20 elements to support all their biochemical needs: these 20 elements are called essential nutrients (Table 1). For an element to be regarded as essential, three criteria are required: 1) a plant cannot complete its life cycle without the element; 2) no other element can perform the function of the element; and 3) the element is directly involved in plant nutrition.

Table 1. Essential Elements for Plant Growth
MacronutrientsMicronutrients
Carbon (C)Iron (Fe)
Hydrogen (H)Manganese (Mn)
Oxygen (O)Boron (B)
Nitrogen (N)Molybdenum (Mo)
Phosphorus (P)Copper (Cu)
Potassium (K)Zinc (Zn)
Calcium (Ca)Chlorine (Cl)
Magnesium (Mg)Nickel (Ni)
Sulfur (S)Cobalt (Co)
Sodium (Na)
Silicon (Si)

Macronutrients and Micronutrients

The essential elements can be divided into two groups: macronutrients and micronutrients. Nutrients that plants require in larger amounts are called macronutrients. About half of the essential elements are considered macronutrients: carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium and sulfur. The first of these macronutrients, carbon (C), is required to form carbohydrates, proteins, nucleic acids, and many other compounds; it is therefore present in all macromolecules. On average, the dry weight (excluding water) of a cell is 50 percent carbon. As shown in Figure 2, carbon is a key part of plant biomolecules.

The next most abundant element in plant cells is nitrogen (N); it is part of proteins and nucleic acids. Nitrogen is also used in the synthesis of some vitamins. Hydrogen and oxygen are macronutrients that are part of many organic compounds, and also form water. Oxygen is necessary for cellular respiration; plants use oxygen to store energy in the form of ATP. Phosphorus (P), another macromolecule, is necessary to synthesize nucleic acids and phospholipids. As part of ATP, phosphorus enables food energy to be converted into chemical energy through oxidative phosphorylation. Likewise, light energy is converted into chemical energy during photophosphorylation in photosynthesis, and into chemical energy to be extracted during respiration. Sulfur is part of certain amino acids, such as cysteine and methionine, and is present in several coenzymes. Sulfur also plays a role in photosynthesis as part of the electron transport chain, where hydrogen gradients play a key role in the conversion of light energy into ATP. Potassium (K) is important because of its role in regulating stomatal opening and closing. As the openings for gas exchange, stomata help maintain a healthy water balance; a potassium ion pump supports this process.

Magnesium (Mg) and calcium (Ca) are also important macronutrients. The role of calcium is twofold: to regulate nutrient transport, and to support many enzyme functions. Magnesium is important to the photosynthetic process. These minerals, along with the micronutrients, which are described below, also contribute to the plant’s ionic balance.

In addition to macronutrients, organisms require various elements in small amounts. These micronutrients, or trace elements, are present in very small quantities. They include boron (B), chlorine (Cl), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), molybdenum (Mo), nickel (Ni), silicon (Si), and sodium (Na).

Deficiencies in any of these nutrients—particularly the macronutrients—can adversely affect plant growth (Figure 3). Depending on the specific nutrient, a lack can cause stunted growth, slow growth, or chlorosis (yellowing of the leaves). Extreme deficiencies may result in leaves showing signs of cell death.

Visit this website to participate in an interactive experiment on plant nutrient deficiencies. You can adjust the amounts of N, P, K, Ca, Mg, and Fe that plants receive . and see what happens.

Try It

Hydroponics is a method of growing plants in a water-nutrient solution instead of soil. Since its advent, hydroponics has developed into a growing process that researchers often use. Scientists who are interested in studying plant nutrient deficiencies can use hydroponics to study the effects of different nutrient combinations under strictly controlled conditions. Hydroponics has also developed as a way to grow flowers, vegetables, and other crops in greenhouse environments. You might find hydroponically grown produce at your local grocery store. Today, many lettuces and tomatoes in your market have been hydroponically grown.

Learning Objectives

Plants can absorb inorganic nutrients and water through their root system, and carbon dioxide from the environment. The combination of organic compounds, along with water, carbon dioxide, and sunlight, produce the energy that allows plants to grow. Inorganic compounds form the majority of the soil solution. Plants access water though the soil. Water is absorbed by the plant root, transports nutrients throughout the plant, and maintains the structure of the plant. Essential elements are indispensable elements for plant growth. They are divided into macronutrients and micronutrients. The macronutrients plants require are carbon, nitrogen, hydrogen, oxygen, phosphorus, potassium, calcium, magnesium, and sulfur. Important micronutrients include iron, manganese, boron, molybdenum, copper, zinc, chlorine, nickel, cobalt, silicon and sodium.


Nutrition

Cathleen M. Steinegger MD, Msc , in Adolescent Medicine , 2008

Nutrition During Pregnancy

Nutritional requirements increase during pregnancy and lactation, in both the adolescent and adult female ( Table 4-3 ). A prenatal vitamin and mineral supplement that contains iron and folate (1 mg) should be prescribed for all pregnant and lactating females, as well as for those who are planning to conceive. During pregnancy, the weight gain goal should be 25 lbs. for the overweight or obese adolescent and up to 40 lbs. for the underweight adolescent. Nutritional counseling should be a routine and repeated component of adolescent prenatal care and should continue after delivery for both mother and baby.


Essential Nutrients

Plants require only light, water and about 20 elements to support all their biochemical needs: these 20 elements are called essential nutrients (Table 1). For an element to be regarded as essential, three criteria are required: 1) a plant cannot complete its life cycle without the element 2) no other element can perform the function of the element and 3) the element is directly involved in plant nutrition.

Table 1. Essential Elements for Plant Growth
Macronutrients Micronutrients
Carbon (C) Iron (Fe)
Hydrogen (H) Manganese (Mn)
Oxygen (O) Boron (B)
Nitrogen (N) Molybdenum (Mo)
Phosphorus (P) Copper (Cu)
Potassium (K) Zinc (Zn)
Calcium (Ca) Chlorine (Cl)
Magnesium (Mg) Nickel (Ni)
Sulfur (S) Cobalt (Co)
Sodium (Na)
Silicon (Si)

Macronutrients and Micronutrients

The essential elements can be divided into two groups: macronutrients and micronutrients. Nutrients that plants require in larger amounts are called macronutrients. About half of the essential elements are considered macronutrients: carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium and sulfur. The first of these macronutrients, carbon (C), is required to form carbohydrates, proteins, nucleic acids, and many other compounds it is therefore present in all macromolecules. On average, the dry weight (excluding water) of a cell is 50 percent carbon. As shown in Figure 2, carbon is a key part of plant biomolecules.

Figure 2. Cellulose, the main structural component of the plant cell wall, makes up over thirty percent of plant matter. It is the most abundant organic compound on earth.

The next most abundant element in plant cells is nitrogen (N) it is part of proteins and nucleic acids. Nitrogen is also used in the synthesis of some vitamins. Hydrogen and oxygen are macronutrients that are part of many organic compounds, and also form water. Oxygen is necessary for cellular respiration plants use oxygen to store energy in the form of ATP. Phosphorus (P), another macromolecule, is necessary to synthesize nucleic acids and phospholipids. As part of ATP, phosphorus enables food energy to be converted into chemical energy through oxidative phosphorylation. Likewise, light energy is converted into chemical energy during photophosphorylation in photosynthesis, and into chemical energy to be extracted during respiration. Sulfur is part of certain amino acids, such as cysteine and methionine, and is present in several coenzymes. Sulfur also plays a role in photosynthesis as part of the electron transport chain, where hydrogen gradients play a key role in the conversion of light energy into ATP. Potassium (K) is important because of its role in regulating stomatal opening and closing. As the openings for gas exchange, stomata help maintain a healthy water balance a potassium ion pump supports this process.

Magnesium (Mg) and calcium (Ca) are also important macronutrients. The role of calcium is twofold: to regulate nutrient transport, and to support many enzyme functions. Magnesium is important to the photosynthetic process. These minerals, along with the micronutrients, which are described below, also contribute to the plant’s ionic balance.

In addition to macronutrients, organisms require various elements in small amounts. These micronutrients, or trace elements, are present in very small quantities. They include boron (B), chlorine (Cl), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), molybdenum (Mo), nickel (Ni), silicon (Si), and sodium (Na).

Deficiencies in any of these nutrients—particularly the macronutrients—can adversely affect plant growth (Figure 3). Depending on the specific nutrient, a lack can cause stunted growth, slow growth, or chlorosis (yellowing of the leaves). Extreme deficiencies may result in leaves showing signs of cell death.

Figure 3. Nutrient deficiency is evident in the symptoms these plants show. This (a) grape tomato suffers from blossom end rot caused by calcium deficiency. The yellowing in this (b) Frangula alnus results from magnesium deficiency. Inadequate magnesium also leads to (c) intervenal chlorosis, seen here in a sweetgum leaf. This (d) palm is affected by potassium deficiency. (credit c: modification of work by Jim Conrad credit d: modification of work by Malcolm Manners)

Hydroponics

Hydroponics is a method of growing plants in a water-nutrient solution instead of soil. Since its advent, hydroponics has developed into a growing process that researchers often use. Scientists who are interested in studying plant nutrient deficiencies can use hydroponics to study the effects of different nutrient combinations under strictly controlled conditions. Hydroponics has also developed as a way to grow flowers, vegetables, and other crops in greenhouse environments. You might find hydroponically grown produce at your local grocery store. Today, many lettuces and tomatoes in your market have been hydroponically grown.

Figure 4. Plant physiologist Ray Wheeler checks onions being grown using hydroponic techniques. The other plants are Bibb lettuce (left) and radishes (right). Credit: NASA

In Summary: Nutritional Requirements

Plants can absorb inorganic nutrients and water through their root system, and carbon dioxide from the environment. The combination of organic compounds, along with water, carbon dioxide, and sunlight, produce the energy that allows plants to grow. Inorganic compounds form the majority of the soil solution. Plants access water though the soil. Water is absorbed by the plant root, transports nutrients throughout the plant, and maintains the structure of the plant. Essential elements are indispensable elements for plant growth. They are divided into macronutrients and micronutrients. The macronutrients plants require are carbon, nitrogen, hydrogen, oxygen, phosphorus, potassium, calcium, magnesium, and sulfur. Important micronutrients include iron, manganese, boron, molybdenum, copper, zinc, chlorine, nickel, cobalt, silicon and sodium.

Try It


Block Reason: Access from your area has been temporarily limited for security reasons.
Time: Fri, 2 Jul 2021 17:58:48 GMT

About Wordfence

Wordfence is a security plugin installed on over 3 million WordPress sites. The owner of this site is using Wordfence to manage access to their site.

You can also read the documentation to learn about Wordfence's blocking tools, or visit wordfence.com to learn more about Wordfence.

Generated by Wordfence at Fri, 2 Jul 2021 17:58:48 GMT.
Your computer's time: .


The influence of genetics on nutritional requirements

The following graph represents the variations in plasma concentration of vitamin D3 among 39 healthy men, over a period of 8 hours after ingesting a test meal containing 5 mg of vitamin D3. Once it has been absorbed, this vitamin is transported via the bloodstream by the chylomicrons (particles formed in the intestine that transport newly-absorbed lipids and lipid-micronutrients to the liver). Credit: INRA-France

Approximately 0.1%: that is the average genetic difference between two individuals. This small percentage is responsible for the variations of certain physical traits, such as eyes, hair, and height, but also for differences in our susceptibility to certain diseases and our capacity to absorb vitamins and phytomicronutrients (carotenoids, polyphenols, etc.), involved in the prevention of chronic disease. Based on the study of genetic interindividual variability, researchers from INRA and Aix-Marseille University have published a review on current knowledge of nutrigenetics in the Annual Review of Nutrition on 21 August 2018. The objective of this emerging science is to personalize nutritional recommendations in order to optimize nutrient, micronutrient, and phytomicronutrient allowances by taking into account genetic differences between individuals and groups of individuals.

Why do vitamin requirements and our capacity to absorb them differ from one individual to another1? Previous studies have shown that the capacity to absorb some vitamins varies considerably between individuals, for example, by a factor of 34 in the case of vitamin D. A better understanding of individual nutritional requirements will allow scientists to make more personalized nutritional recommendations, which is precisely the aim of nutrigenetics. Even though we do not know all the factors responsible for interindividual variability yet, genetics already seems to be one of the most decisive.

Researchers from INRA and Aix-Marseille University have compiled current knowledge about genetic interindividual variability in regard to the absorption of micronutrients, especially fat-soluble vitamins (A, D, and E), carotenoids (plant pigments such as beta-carotene, lycopene, and lutein), and phytosterols (plant-derived sterols). Given the fact that our body cannot produce them and that they are either essential for it to function well (vitamins) or capable of enhancing the beneficial effects of fruits and vegetables (certain phytomicronutrients), human beings must obtain these micronutrients through the diet. Furthermore, an adequate intake of vitamins and phytochemicals like carotenoids or polyphenols is essential to prevent conditions such as cancer and cardiovascular, neurodegenerative and ocular diseases.

Recent information shows that interindividual variability in the bioavailability of certain micronutrients is modulated by single nucleotide polymorphisms (SNPs)2. The identified SNPs are located in genes involved in the intestinal uptake and transport of these compounds. The effect of each SNP is usually low, but a combination of SNPs can explain a significant part of interindividual variability. For example, the researchers discovered that the interindividual variability in the bioavailability of vitamin E is modulated, at least to some extent, by a combination of 28 SNPs in 11 genes.

Research suggests that other types of genetic variations could also be involved in the bioavailability of these micronutrients, for instance, copy number of certain genes associated with micronutrient absorption and metabolism. Factors other than genetic could be involved as well. One example is the microbiota, which has been proven to participate in the regulation and absorption of certain micronutrients.

The scientists continue their research in order to identify the genetic variations involved in the absorption of other nutrients or phytomicronutrients. Two such studies are currently underway, concerning cholesterol and phytoene and phytofluene, two phytomicronutrients present in tomatoes. Their main objective is to define genetic scores that can accurately predict the way in which nutrients, micronutrients and phytomicronutrients are absorbed according to each genotype. In the future, these results should allow us to optimize intake recommendations of compounds involved in the prevention of certain diseases, taking into account the genetic characteristics of each individual.

Interindividual variability and the capacity to absorb vitamin D3

Vitamin D3 (cholecalciferol) is known to be crucial for bone metabolism. However, recent data suggests that its biological role goes well beyond that, since its deficiency increases the risk of developing certain diseases. Paradoxically, research on the absorption of vitamin D is still scarce.

Scientists measured vitamin D3 concentration from the chylomicrons of each individual. The orange curve represents the average values from all 39 men, whereas the purple and the green curves represent the individual with the best and worst results respectively. This variability can be explained, for the most part, by a combination of 17 SNP in 13 genes.


Nutritional Requirements of Axenically Cultured Drosophila Melanogaster Adults

1. A technique is described for the culture of germ-free Drosophila adults on defined diets. The complete larval diet, with the agar base replaced by cotton-wool, was found to be adequate for adults and permitted them to lay more or less normal numbers of eggs during a 16-day test period.

2. Omission tests showed that casein, the B vitamins (other than B12 and biotin) K and Mg were essential for normal ovary development.

3. Casein could be replaced with an amino acid mixture. The ten ‘essential’ amino acids were all found necessary for egg production but arginine, histidine and methionine were apparently synthesized, although at an inadequate rate. The remaining essential amino acids seemed to be the nutrients required in the greatest amounts since egg production stopped soonest when they were omitted. Individual ‘nonessential’ amino acids could be removed from the mixture, but a supply of them was necessary for normal egg production and viability.

4. Omission of fructose lowers egg production but does not cause its cessation even after 16 days.

5. The difficulty of determining that essential supplies are not being met by contaminants is illustrated by examination of cholesterol requirements. In this case, and possibly also for choline, the requirement for egg formation is very much less than for larval development, and might be satisfied from contamination of the medium constituents.

6. Neglecting these trace supplies (which can be measured only in fractions of a microgram per 5 ml. medium) RNA, choline, cholesterol and biotin seem unnecessary for egg formation. The quantitative requirements of the normal adult female must therefore be different from those of the larva.

7. It was not possible to produce a true P deficiency, or to be certain that traces of Ca and Cl in the medium were not sufficient to permit normal fecundity.

8. The ovary is shown to be capable of recovery from protein starvation and to respond to omission of single essential amino acids by ceasing to form new chambers. The majority of deficiencies result in inhibition of vitellogenesis, after a period when inviable eggs are laid. Only Mg and pyridoxine omission produced distinguishable pathological changes, which are illustrated.


Nutritional Requirements of Plants

Plants are unique organisms that can absorb nutrients and water through their root system, as well as carbon dioxide from the atmosphere. Soil quality and climate are the major determinants of plant distribution and growth. The combination of soil nutrients, water, and carbon dioxide, along with sunlight, allows plants to grow.

The Chemical Composition of Plants

Since plants require nutrients in the form of elements such as carbon and potassium, it is important to understand the chemical composition of plants. The majority of volume in a plant cell is water it typically comprises 80 to 90 percent of the plant’s total weight. Soil is the water source for land plants, and can be an abundant source of water, even if it appears dry. Plant roots absorb water from the soil through root hairs and transport it up to the leaves through the xylem. As water vapor is lost from the leaves, the process of transpiration and the polarity of water molecules (which enables them to form hydrogen bonds) draws more water from the roots up through the plant to the leaves ([link]). Plants need water to support cell structure, for metabolic functions, to carry nutrients, and for photosynthesis.

Plant cells need essential substances, collectively called nutrients, to sustain life. Plant nutrients may be composed of either organic or inorganic compounds. An organic compound is a chemical compound that contains carbon, such as carbon dioxide obtained from the atmosphere. Carbon that was obtained from atmospheric CO2 composes the majority of the dry mass within most plants. An inorganic compound does not contain carbon and is not part of, or produced by, a living organism. Inorganic substances, which form the majority of the soil solution, are commonly called minerals: those required by plants include nitrogen (N) and potassium (K) for structure and regulation.

Essential Nutrients

Plants require only light, water and about 20 elements to support all their biochemical needs: these 20 elements are called essential nutrients ([link]). For an element to be regarded as essential, three criteria are required: 1) a plant cannot complete its life cycle without the element 2) no other element can perform the function of the element and 3) the element is directly involved in plant nutrition.

Essential Elements for Plant Growth
Macronutrients Micronutrients
Carbon (C) Iron (Fe)
Hydrogen (H) Manganese (Mn)
Oxygen (O) Boron (B)
Nitrogen (N) Molybdenum (Mo)
Phosphorus (P) Copper (Cu)
Potassium (K) Zinc (Zn)
Calcium (Ca) Chlorine (Cl)
Magnesium (Mg) Nickel (Ni)
Sulfur (S) Cobalt (Co)
Sodium (Na)
Silicon (Si)

Macronutrients and Micronutrients

The essential elements can be divided into two groups: macronutrients and micronutrients. Nutrients that plants require in larger amounts are called macronutrients. About half of the essential elements are considered macronutrients: carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium and sulfur. The first of these macronutrients, carbon (C), is required to form carbohydrates, proteins, nucleic acids, and many other compounds it is therefore present in all macromolecules. On average, the dry weight (excluding water) of a cell is 50 percent carbon. As shown in [link], carbon is a key part of plant biomolecules.

The next most abundant element in plant cells is nitrogen (N) it is part of proteins and nucleic acids. Nitrogen is also used in the synthesis of some vitamins. Hydrogen and oxygen are macronutrients that are part of many organic compounds, and also form water. Oxygen is necessary for cellular respiration plants use oxygen to store energy in the form of ATP. Phosphorus (P), another macromolecule, is necessary to synthesize nucleic acids and phospholipids. As part of ATP, phosphorus enables food energy to be converted into chemical energy through oxidative phosphorylation. Likewise, light energy is converted into chemical energy during photophosphorylation in photosynthesis, and into chemical energy to be extracted during respiration. Sulfur is part of certain amino acids, such as cysteine and methionine, and is present in several coenzymes. Sulfur also plays a role in photosynthesis as part of the electron transport chain, where hydrogen gradients play a key role in the conversion of light energy into ATP. Potassium (K) is important because of its role in regulating stomatal opening and closing. As the openings for gas exchange, stomata help maintain a healthy water balance a potassium ion pump supports this process.

Magnesium (Mg) and calcium (Ca) are also important macronutrients. The role of calcium is twofold: to regulate nutrient transport, and to support many enzyme functions. Magnesium is important to the photosynthetic process. These minerals, along with the micronutrients, which are described below, also contribute to the plant’s ionic balance.

In addition to macronutrients, organisms require various elements in small amounts. These micronutrients, or trace elements, are present in very small quantities. They include boron (B), chlorine (Cl), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), molybdenum (Mo), nickel (Ni), silicon (Si), and sodium (Na).

Deficiencies in any of these nutrients—particularly the macronutrients—can adversely affect plant growth ([link]. Depending on the specific nutrient, a lack can cause stunted growth, slow growth, or chlorosis (yellowing of the leaves). Extreme deficiencies may result in leaves showing signs of cell death.

Visit this website to participate in an interactive experiment on plant nutrient deficiencies. You can adjust the amounts of N, P, K, Ca, Mg, and Fe that plants receive . . . and see what happens.

Hydroponics Hydroponics is a method of growing plants in a water-nutrient solution instead of soil. Since its advent, hydroponics has developed into a growing process that researchers often use. Scientists who are interested in studying plant nutrient deficiencies can use hydroponics to study the effects of different nutrient combinations under strictly controlled conditions. Hydroponics has also developed as a way to grow flowers, vegetables, and other crops in greenhouse environments. You might find hydroponically grown produce at your local grocery store. Today, many lettuces and tomatoes in your market have been hydroponically grown.

Section Summary

Plants can absorb inorganic nutrients and water through their root system, and carbon dioxide from the environment. The combination of organic compounds, along with water, carbon dioxide, and sunlight, produce the energy that allows plants to grow. Inorganic compounds form the majority of the soil solution. Plants access water though the soil. Water is absorbed by the plant root, transports nutrients throughout the plant, and maintains the structure of the plant. Essential elements are indispensable elements for plant growth. They are divided into macronutrients and micronutrients. The macronutrients plants require are carbon, nitrogen, hydrogen, oxygen, phosphorus, potassium, calcium, magnesium, and sulfur. Important micronutrients include iron, manganese, boron, molybdenum, copper, zinc, chlorine, nickel, cobalt, silicon and sodium.

Review Questions

For an element to be regarded as essential, all of the following criteria must be met, except:

  1. No other element can perform the function.
  2. The element is directly involved in plant nutrition.
  3. The element is inorganic.
  4. The plant cannot complete its lifecycle without the element.

The nutrient that is part of carbohydrates, proteins, and nucleic acids, and that forms biomolecules, is ________.

Most ________ are necessary for enzyme function.

What is the main water source for land plants?

Free Response

What type of plant problems result from nitrogen and calcium deficiencies?

Deficiencies in these nutrients could result in stunted growth, slow growth, and chlorosis.

Research the life of Jan Babtista van Helmont. What did the van Helmont experiment show?

van Helmont showed that plants do not consume soil, which is correct. He also thought that plant growth and increased weight resulted from the intake of water, a conclusion that has since been disproven.

List two essential macronutrients and two essential nutrients.

Answers may vary. Essential macronutrients include carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. Essential micronutrients include iron, manganese, boron, molybdenum, copper, zinc, chlorine, nickel, cobalt, sodium, and silicon.

Glossary


  • Complete BSC 2011 / BSC 2011L
  • 2.5 GPA required for all critical-tracking courses
  • 2.0 UF GPA required

To remain on track, students must complete the appropriate critical-tracking courses, which appear in bold. These courses must be completed by the terms as listed above in the Critical Tracking criteria.

This semester plan represents an example progression through the major. Actual courses and course order may be different depending on the student's academic record and scheduling availability of courses. Prerequisites still apply.

Additional electives may be needed to complete the 120 credits required for graduation.

Nutritional sciences integrates knowledge of biological principles to interpret emerging knowledge of cellular and physiological systems. Students' knowledge of biochemical processes and nutrient functions will enable them to interpret effects of changes in nutrient availability on metabolic functions. Students will utilize their knowledge of nutrient requirements, food sources and physiological systems to determine nutrient and dietary needs of individuals in various life-cycle stages and/or with nutrition-related diseases.


PhD in Nutritional and Metabolic Biology

The Nutritional and Metabolic Biology (NMB) PhD training program prepares students to work at the frontiers of biomedical research in nutritional and metabolic sciences, exploring the role of nutrition in maintaining optimal human health. The objective of the training program is to prepare individuals who will conduct original basic science research, teach in medical schools and universities, and hold positions of leadership in community and international nutrition.

Housed within the Institute of Human Nutrition (IHN) at Columbia University Medical Center (CUMC), this inter-disciplinary and multi-departmental training program is highly structured and comprises both coursework and basic research. The NMB program is one of the few pre-doctoral training programs in nutrition in the United States that is located within a medical school and is unique among the other PhD programs at CUMC with an equal number of MDs and PhDs as faculty mentors (including ten MD/PhDs). The location of the NMB training program in a medical school offers trainees a wide array of research opportunities in laboratories headed by established senior scientists as well as NIH-funded younger independent investigators, all focused on the role of nutrition and metabolism in health and disease.


Nutritional requirements and human evolution: A bioenergetics model

A bioenergetics model is developed to examine changes in metabolic requirements over the course of human evolution. Data on (1) body size and resting metabolism, (2) brain size and metabolism, (3) activity budgets, and (4) foraging patterns for humans and other anthropoids are used to evaluate ecological correlates of variation in diet and energy expenditure. Analyses of variation in these extant species provide a framework for estimating (1) resting metabolic requirements, (2) brain metabolic needs, and (3) total energy requirements in fossil hominids. Anthropoid primates spend about 8% of resting metabolism to maintain their brains, a significantly larger proportion than in other mammals (3–4%), but still significantly less than 20–25% in humans. Total energy expenditure among anthropoids is positively correlated with day range and dietary quality. Human foragers fit this pattern, having high levels of energy expenditure, large foraging ranges, and a high quality diet. Within the fossil record, it appears that both total energy expenditure (TEE) and energy required by the brain increased substantially with the emergence of Homo erectus. For H. erectus, the percentage of resting metabolism used by the brain falls beyond the nonhuman primate range and approaches the modern human range. Additionally, TEE is 35–55% greater than in the australopithecines. The high total metabolic needs and the large proportion of energy required by the brain imply that important dietary changes occurred with H. erectus. These metabolic and dietary changes are linked to (1) the emergence of hunting and gathering, (2) the evolution of the human pattern of prolonged development, and (3) the coexistence and competition with the robust australopithecines.


Accreditation

The Accreditation Council for Education in Nutrition and Dietetics (ACEND) is the accrediting body for the Didactic Program in Dietetics, which is the Nutrition and Dietetics option of the Nutritional Sciences major.

The Pennsylvania State University Didactic Program in Dietetics is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) of the Academy of Nutrition and Dietetics,120 Riverside Plaza, Suite 2190, Chicago, IL 60606-6995, 312-899-0040, ext 5400.


Watch the video: Biology Lab. Nutrient Analysis (August 2022).